

Comparative analysis of bioactive compounds between Artemisia capillaris Thunb and Artemisia iwayomogi Kitamura

Sang Mi Jung^{1*}, Min Hee Kwon¹, Moon Jin Ra¹, Yong Jun Lee¹ 1)Hongcheon Institute of Medicinal Herb, Hongcheon-gun 25142, Korea.

Introduction

Artemisia, belonging to the daisy family Asteraceae, include the various species like mugwort, wormwood and sagebrush. After COVID-19 pademic, some pharmaceutical botanists suggests any bioactive compound present in Artemisia genus might play a role part in the significant activity against SARS coronavirus and could be popularized as a therapeutic agent for the reason of cheap and easily available. Among the most used Artemisia genera in Korea, we noted that two Artemisia genera, Artemisia capillaris Thunb(ACT) and Artemisia iwayomogi Kitamura(AIK), were being used interchangeably. In this study, we revealed the different ingredients between ACT and AIK.

Marker Compounds

Scopolin

Molecular Weight: 354.31

Chlorogenic acid

Molecular Weight: 354.31

Scopoletin Molecular Formula: C10H2O4 • Molecular Formula: C16H12Oa Molecular Weight: 192.16

Caffeic acid Molecular Formula: C₉H₈O₄ Molecular Weight: 180.16

Isochlorogenic acid A Molecular Formula: C₂₅H₂₄O₁₂ • Molecular Formula: C₂₅H₂₄O₁₂ • Molecular Formula: C₂₅H₂₄O₁₂ Molecular Weight: 516.45

Isoquercitrin Molecular Formula: C₂₁H₂₀O₁₂ Molecular Weight: 464.38

Materials and methods

Figure 1. Materials (A: Artemisia capillaris Thunb, B: Artemisia iwayomogi Kitamura)

H				
Instrument	Shimadzu HPLC-UV	Gradient profile		
Column	Cosmosil C18 (4.6mm x 250mm, 5um)	Time	Sol	vent
Column Temp	35°C	(min)	A (%)	B (%)
		0	90	10
Wavelength	330nm	30	80	20
Mobile phase	(A) 0.1% FA* in DW** (B) 0.1% FA in AcN***	50	80	20
		51	60	40
		55	60	40
Flow	1 mL/min	56	90	10
Injection volume	10 μL	70	90	10

• Extraction of ACT and AIK

- → 5g of Powdered ACT(AIK) + Solvent 100 mL \rightarrow Reflux extraction \rightarrow Filter(filter paper)
- → Using the Simultaneously Analysis Method(SAM) developed by our research team, total 10 candidate bioactive compounds-scopoletin, scopolin, scoparone, caffeic acid, chlorogenic acid, hyperoside, isoquercitrin, isochlorogenic acid B, isochlorogenic acid A, isochlorogenic acid c-have been analyzed from ACT and AIK under 100% ethanol and distilled water extractions.

Figure 2, HPLC chromatograms of marker compounds, total 10 candidate bioactive compounds-Scopoletin, Scopolin, Scoparone, Caffeic acid, Chlorogenic acid, Hyperoside, Isoquercitrin, isochlorogenic acid B. Isochlorogenic acid A. Isochlorogenic acid C.

Table 1. The regression data, marker compounds 1 - 10 analyzed by UPLC

Compound	Concentration	Regression equation	R ²
Scoparone	0.20-200.00	y = 31157x - 4804.1	0.9998
Scopolin	0.09-2.84	y = 17610x - 163.72	1
Chlorogenic acid	6.51-208.25	y = 31502x + 46050	0.9999
Caffeic acid	1.78-113.71	y = 55007x + 13861	0.9999
Scopoletin	0.51-32.82	y = 34564x + 2695.1	0.9999
Hyperoside	0.35-88.51	y = 18006x + 2106.5	0.9999
Isoquercitrin	1.68-53.71	y = 17666x + 157.07	1
Isochlorogenic acid B	4.07-130.20	y = 33401x - 1400.9	1
Isochlorogenic acid A	6.04-193.20	y = 43565x - 58998	0.9995
Isochlorogenic acid C	4.29-137.20	y = 31415x - 14721	1

Figure 3. HPLC chromatograms of Artemisia capillaris Thunb extracts

0% EtOH

Table 2. Contents of marker compounds in Artemisia capillaris Thunb and Artemisia iwayomogi Kitamura extracts. Results are presented as the mean \pm SD of 3 independent in triplicate.

Compound (ug/g)	Extraction			
Compound (µg/g)	Distilled water	100% ethanol		
Scoparone	57.36±0.45	138.19±3.46		
Scopolin	4.62±0.09			
Chlorogenic acid	154.19±2.18	19.13±0.41		
Caffeic acid	3.93±0.07	0.52±0.02		
Scopoletin	-	1.70±0.05		
Hyperoside	71.05±1.90	49.03±1.17		
Isoquercitrin	14.42±0.33	10.26±0.26		
Isochlorogenic acid B	114.89±1.59	14.72±0.64		
Isochlorogenic acid A	61.86±1.18	28.83±0.62		
Isochlorogenic acid C	79.36±2.52	18.26±0.36		

Discussion

The amounts of both, chlorogenic acid and scoparone, are the highest amounts of them in ACT, but not detected in AIK. The highest amounts of two bioactive compounds, scopolin and scopoletin, among them were detected in AIK, and specifically the higher levels of scopolin were found in AIK compared to ACT. These results suggests that the comparative analysis of compositional components between ACT and AIK have to be useful as basic data of the development of therapeutic agents or the commercialization of for the purpose health functional foods.

(Acknowledgement) 본 연구는 산림생명자원 소재 발굴 연구사업(사업번호: 2020192A00-2022-BA01)의 지원에 의해 이루어진 결과로 이에 감사드립니다.

Molecular Formula: C₁₆H₁₈O₉
Molecular Formula: C₂₁H₂₀O₁₂

Isochlorogenic acid B Isochlorogenic acid C Molecular Weight: 516.45 Molecular Weight: 516.45

Scoparone Molecular Formula: C₁₁H₁₀O₂

Molecular Weight: 206.19

Hyperoside

Molecular Weight: 464.38